Pairs of edges as chords and as cut-edges

نویسنده

  • Terry A. McKee
چکیده

Several authors have studied the graphs for which every edge is a chord of a cycle; among 2-connected graphs, one characterization is that the deletion of one vertex never creates a cut-edge. Two new results: among 3-connected graphs with minimum degree at least 4, every two adjacent edges are chords of a common cycle if and only if deleting two vertices never creates two adjacent cut-edges; among 4-connected graphs, every two edges are always chords of a common cycle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Edge-decomposition of topological indices

The topological indices, defined as the sum of contributions of all pairs of vertices (among which are the Wiener, Harary, hyper–Wiener indices, degree distance, and many others), are expressed in terms of contributions of edges and pairs of edges.

متن کامل

On the variable sum exdeg index and cut edges of graphs

The variable sum exdeg index of a graph G is defined as $SEI_a(G)=sum_{uin V(G)}d_G(u)a^{d_G(u)}$, where $aneq 1$ is a positive real number,  du(u) is the degree of a vertex u ∈ V (G). In this paper, we characterize the graphs with the extremum variable sum exdeg index among all the graphs having a fixed number of vertices and cut edges, for every a>1.

متن کامل

Some Edge Cut Sets and an Upper bound for Edge Tenacity of Organic Compounds CnH2n+2

The graphs play an important role in our daily life. For example, the urban transport network can be represented by a graph, as the intersections are the vertices and the streets are the edges of the graph. Suppose that some edges of the graph are removed, the question arises, how damaged the graph is. There are some criteria for measuring the vulnerability of graph; the...

متن کامل

Logical s-t Min-Cut Problem: An Extension to the Classic s-t Min-Cut Problem

Let $G$ be a weighted digraph, $s$ and $t$ be two vertices of $G$, and $t$ is reachable from $s$. The logical $s$-$t$ min-cut (LSTMC) problem states how $t$ can be made unreachable from $s$ by removal of some edges of $G$ where (a) the sum of weights of the removed edges is minimum and (b) all outgoing edges of any vertex of $G$ cannot be removed together. If we ignore the second constraint, ca...

متن کامل

Chorded Cycles

A chord is an edge between two vertices of a cycle that is not an edge on the cycle. If a cycle has at least one chord, then the cycle is called a chorded cycle, and if a cycle has at least two chords, then the cycle is called a doubly chorded cycle. The minimum degree and the minimum degree-sum conditions are given for a graph to contain vertex-disjoint chorded (doubly chorded) cycles containi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discussiones Mathematicae Graph Theory

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2014